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We study the impact of a random crystal field on magnetic materials of spin-1 and spin-3/2, described by the Blume-Capel 
model. For this purpose, we use a real space renormalization group approximation, namely the Migdal-Kadanoff one. We 
give the principal fixed points and phase diagrams found, what allows us to have a better understanding of the critical 
behavior in these materials. In the two-dimensional case, we observe that randomness, even in small amounts, removes 
totally the first order phase transitions, replacing them by a smooth continuation and this result is common to spin-1 and 
spin-3/2 materials; there is only the appearance of second order transitions between the ordered and disordered phases. 
But at three-dimensions, there is a clear difference between the critical behaviors of spin-1 and spin-3/2 materials. Indeed, 
for the spin-1 three-dimensional materials, the first order transition is removed, whatever the amount of randomness 
introduced. On the other hand, for the three-dimensional spin-3/2 materials, the first order transition resists to small 
amounts of randomness and the first order transition line finishes inside the ordered phase by an end-point. As the 
randomness increases, the first order transition line becomes shorter and above a certain threshold, defined by a critical 
value of probability, it disappears completely and is converted into smooth continuation between the ferromagnetic phases. 
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1. Introduction 
 
The Blume-Capel model, a spin-1 Ising model with a 

single anisotropic ion, initially proposed to study the first 
order magnetic phase transitions, has been investigated by 
numerous studies and led to many interesting 
developments [1,2]. Later, the Blume-Emery-Griffiths 
model [3], used to study the isotopic mixtures of helium 
3He-4He and multiple physical systems, was introduced as 
a generalization of the Blume-Capel model. Several 
approximation methods, such as the effective field theory 
[4], the variational methods [5], the Monte Carlo 
simulations [6], the mean field approximation [7] and the 
renormalization group techniques [8,9], have been devoted 
to the study of spin-1 Blume-Capel and Blume-Emery-
Griffiths models. One can extend these models by 
including higher spin values and the spin-3/2 Blume-Capel 
and Blume-Emery-Griffiths models, proposed to explain 
the tricritical properties in ternary fluids mixtures [10] and 
the magnetic and crystallographic phase transitions in 
some rare-earth compounds such as DyVO4 [11], are 
probably the simplest extensions, investigated also by 
several methods such as the mean field approximation 
[12], the effective field theory [13], the techniques of 
renormalization group [14,15]. 

Many studies have been realized in order to have a 
better understanding of randomness effect [16,17,18]on 
the phase transitions in physical systems. The randomness 
can be introduced by the mean of random bonds, random 

fields or random potential. It has been remarked that 
whatever the way by which the randomness is introduced, 
it produces drastic impact on the critical behavior of the 
systems. Concerning the two-dimensional systems, it is 
generally observed that the introduction of the most 
insignificant amount of randomness suffices to remove the 
first order phase transition, transforming it into a second 
order one or a smooth continuation. But in systems of 
upper dimensions, the first order transition generally 
resists to small amounts of randomness, disappearing 
completely only above a certain threshold defined by a 
critical probability. However, for two-dimensional systems 
as well as for three-dimensional ones, there is not a 
complete agreement in the results found by using different 
techniques. The disparity in the results observed shows 
that the effect of randomness on the phase transitions is 
not well controlled, given the absence of an exact result. 

In our present study, we focus our attention on the 
spin-1 and spin-3/2 Blume-Capel models, on which we 
introduce randomness by a crystal field obeying to a 
bimodal probability distribution. For this purpose, we use 
the techniques of real space renormalization group, more 
precisely that of Migdal-Kadanoff [19,20]. The pure 
version of the spin-1 Blume-Capel model presents a 
tricritical point between the first and second order lines, 
which separate the ferromagnetic and paramagnetic phases 
in both two- and three-dimensional cases. Concerning the 
spin-3/2 Blume-Capel model, its pure version offers a 
second order transition line between the ferromagnetic and 
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paramagnetic phases, the two ferromagnetic phases being 
separated by a first order transition line ending in the 
second order transition line by a tetracritical point, and 
such a result is common to the two- and three-dimensional 
cases. When we introduce the random crystal field, we 
observe that for the two-dimensional systems, it removes 
totally the first order phase transition, transforming it into 
a second order transition one for the spin-1 system and 
into a smooth continuation for the spin-3/2 system. 
However, in three dimensions, the spin-1 and spin-3/2 
systems react differently to the introduction of 
randomness; for the spin-1 three-dimensional model, the 
randomness eliminates the first order transition as in the 
two-dimensional case, whereas for thespin-3/2 three-
dimensional model the first order disappears only after a 
certain threshold of randomness, determined by a critical 
value of probability. Below this threshold, the first order 
transition finishes in the ferromagnetic phases by a critical 
end-point under the second order transition line. By 
comparing these results, one notes that there is a 
dimensional crossover in the critical behavior of the spin-
3/2 random Blume-Capel model, while this crossover is 
absent in the spin-1 case. 

The remainder of our present article is organized as 
follows. We treat in section 2 the formalism of our method 
and manage to find the Migdal-Kadanoff recursion 
equations for the spin-1 and spin-3/2 Blume-Capel models. 
Our principal findings are reported in section 3, where we 
give different discussions on the fixed points and phase 
diagrams found and compare our results with those 
existing in literature. 

 
 
2. Model and formulations 
 
2.1 Spin-1 case 
 
The spin-1 Blume-Capel model is described by the 

following Hamiltonian:  
 

2

, 
i j i i

i j i

H J S S Sβ− = − ∆∑ ∑  (1) 

 
where Si takes three values, 0, 1 and -1. J and ∆i represent 
respectively the reduced bilinear interaction and the crystal 
field at the site i. The first summation concerns all first 
nearest neighbor pairs of the lattice and the second one all 
the sites of a d-dimensional hypercubic lattice. 

We will introduce the reduced biquadratic interaction 
K, albeit it is equal to zero in the Blume-Capel model, in 
order to have self-consistent recursion relations by the 
renormalization group technique we adopt. Thus, the 
Hamiltonian takes the following form: 
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H J S S K S s Sβ− = + − ∆∑ ∑ ∑  (2) 

The crystal field is subject of randomness introduced 

by a probability distribution of two peaks, that can be 

written as: 
( ) ( ) ( ) ( )1i i iP p pδ δ= +∆ + −∆ ∆∆ −∆                  (3) 

 
The approximation we use is the Migdal-Kadanoff 

one, a real space renormalization group technique 
combining decimation as well as bond shifting. Let us 
consider a four spins cluster in order to apply the 
renormalization procedure. We can write the 
corresponding reduced Hamiltonian as: 
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After having realized decimation with a spatial 

rescaling factor 3b =  on the two middle spins, one 
obtains the following Hamiltonian: 
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where J% , K% , 1∆%  and 4∆%  are functions of  J , K , 1∆ , 

2∆ , 3∆  and 4∆ and d.  
The renormalization procedure introduces randomness 

in all the renormalized quantities of the system and leads 
to a broadening of the parameter space. Thus, the 
probability distribution of the crystal field, which was of 
two peaks before renormalization, becomes of eight peaks 
after. So, to keep the renormalized distribution in the same 
form as the initial ones, we use the Stinchcombe-Watson 
[21] approximation and after bond shifting, the Migdal-
Kadanoff recursions are formally given by: 
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2.2 Spin-3/2 case 
 
For the spin-3/2 Blume-Capel model, we need to 

introduce, in addition to the biquadratic interaction K, two 
interactions, C and F, added only for a purely technical 
purpose in order to preserve the parameters space 
renormalization. Therefore, the spin-3/2 Blume-Capel 
Hamiltonian will take the following form: 
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We use the same probability distribution for the 
crystal field as in the spin-1 case. The Hamiltonian of a 
four spins cluster before proceeding the decimation writes: 
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To keep the possible sublattice symmetry breaking 

character of the system, we perform the decimation by a 
spatial rescaling factor chosen as an odd integer, 3b = . 
After decimation of the two middle spins, the cluster 
Hamiltonian is given as follows: 
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with J% , K% , 1∆% , 4∆% , C%  and F%  the interactions after 

decimation and functions of J, K, 1∆ , 2∆ , 3∆ , 4∆ , C 
and F and the dimension d. 

As in the spin-1 case, the renormalization procedure 
introduces randomness in all the physical quantities of the 
system and leads to a broadening of the parameter space. 
Using the Stinchcombe–Watson approximation, we obtain 
after bond shifting the Migdal-Kadanoff recursion 
equations, too lengthy to be explicitly written here, and 
expressed as: 
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2. Results and discussions 
 
2.1 Spin-1 and spin-3/2 pure Blume-Capel models 
 
In order to have a better understanding of the random 

field effect, let us present the results concerning the pure 
versions of the spin-1 and spin-3/2 Blume-Capel models. 
To find the results of the pure models, we have taken the 
probability equal to zero in the Migdal-Kadanoff recursion 
equation previously established. We find that the two-
dimensional systems as well as the three-dimensional ones 
present the same qualitative critical behavior, differing 
only by quantitative considerations. Such a consideration 
is true for the spin-1 and spin-3/2 cases.  

In the spin-1 case, we observe two phase transition 
lines of different critical nature between the ferromagnetic 
phase and the paramagnetic one. These are the first order 
transition line occurring at low temperature and the second 
order line observed at higher temperature, these two lines 
meeting at a tricritical point. The second order transition 
line is characterized by a critical fixed point, which 
coordinates in the parameter space (J, K, ∆) are (0.72,-
0.086,+∞,1) in the two-dimensional case and(0.354,-
0.0069,+∞,1) in the three-dimensional one.  

Regarding the spin-3/2 case, one notes the existence 
of two second order transition lines between the ordered 
and disordered phases. The disordered phase is subdivided 
into two paramagnetic phases of magnetization m=0, one 
of quadrupolar momentum q>5/4, labeled by P3/2, the 
another of quadrupolar momentum q<5/4, labeled by P1/2. 
The ordered phase is divided into two ferromagnetic 
phases of magnetization m≠0, denoted by F3/2 and F1/2, 
respectively of magnetization q>5/4 and q<5/4. Between 
the phases F3/2 and P3/2, is found a second order line, 
described by the critical fixed point which coordinates in 
the parameter space (J, K, ∆, C, F), are (0.005,-0.021,+∞,-
0.020,0.080) and (1.662,0,+∞,-0.511,0.115)) respectively 
in the two- and three-dimensional cases. The another 
second order transition line, characterized by the critical 
fixed point of coordinates (3.653,-0.021,-∞,-1.622,0.7206) 
and (1.793,-0.0017,-∞,-0.796,0.354) respectively in the 
two- and three-dimensional cases, separates the phases 
F1/2and P1/2. There is a first order transition arising 
between the ferromagnetic phases, and it ends on the 
second order transition lines by a tetracritical point. There 
is no first order transition between the paramagnetic 
phases and one can represent them by a single phase, 
denoted by P.  

One can consult the references [22]and [23]where are 
presented the phase diagrams respectively for the spin-1 
and the spin-3/2 models, in both two- and three-
dimensional cases. 
 

2.2 Spin-1 and spin-3/2 random Blume-Capel  
       models 
 
2.2.1 The two-dimensional case 
 
By taking a value of probability such that 0<p<1 in 

the Migdal-Kadanoff recursion equations, we introduce 
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randomness in the spin-1 and spin-3/2 two-dimensional 
Blume-Capel model, and we find that its introduction 
produces a remarkable effect on the critical behavior. 
Indeed, in the spin-1 case as well as in the spin-3/2 one, 
we note that whatever the insignificant amount of 
randomness introduced, that suffices to remove the first 
order phase transition; only those of second order occur. 

In the spin-1 case, the second order phase transitions 
emerging under randomness from the first and second 
order regimes of the pure model are described by the same 
critical fixed point and this point presents the same 
coordinates as those of the fixed point describing the 
second order transition in the pure two-dimensional model. 
One can conclude therefore that the second order 
transitions in the pure and random models belong to the 
same universality class. We give in Figure 1 an example of 
phase diagram showing the effect of randomness on the 
spin-1 two-dimensional model. 
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∆ / J

1 
/ J

 
 

Fig. 1. Phase diagram of the random two-dimensional 
spin-1 Blume-Capel model in the plane (1/J, ∆/J), 

probability p=0.14. 
 

In the spin-3/2 case, the first order transition line 
between the ferromagnetic phases F3/2 and F1/2,suppressed 
completely by randomness, is converted into a smooth 
continuation; then, these two phases can be treated as a 
single ordered phase, denoted by F. We also remark in this 
case that the second order transitions belong to the same 
universality classes as those in the three-dimensional pure 
model, given that they are described by the same critical 
fixed point. Fig. 2 is given as an example of phase 
diagram, plotted in the (1/J, ∆/J) plane for a value of 
probability p=0.2. 

In references [24,25,26], the authors found in 
agreement with us that the presence of randomness, even 
in weak amounts, suppresses totally the first order 
transition, converting it into a continuous one; such a 
result is what one finds commonly reported in literature. 
However, let us mention that certain authors, for example 
in references [27,28], reported contrary results, in which 
the first order in two-dimensional systems disappears only 
below a threshold of randomness. 
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Fig. 2. Phase diagram of the random two-dimensional 
spin-3/2 Blume-Capel model in the plane 

(1/J, ∆/J)corresponding to the probability p=0.2. 
 

 
2.2.2 The three-dimensional case 
 
Contrary to the two-dimensional case, the three-

dimensional spin-1 and spin-3/2 models react differently 
under the influence of randomness. Indeed, the spin-1 
model continues to behave like in its two-dimensional 
case, the first order transition being completely suppressed 
by randomness and being replaced by a second order 
transition. One can see it in Figure 3, plotted for a 
probability p=0.2, but this phase diagram is qualitatively 
valid for all values of probability. 
 

0

0.5

1.0

1.5

2.0

0 4 8 12

(P)

(F)

∆ / J

1 
/ J

 
Fig. 3. Phase diagram of the random three-dimensional 

spin-1 Blume-Capel model in the plane (1/J, ∆/J) 
corresponding to the value of probability p=0.2. 

 
Regarding the spin-3/2 model, we remark that the first 

order line resists to small amounts of randomness and 
finishes in the ordered phase by a critical end-point. 
Indeed, it has been remarked that the effect of randomness 
generally decreases when the dimension increases. This is 
certainly what explains that in the spin-3/2 two-
dimensional model, randomness suppresses completely the 
first order transition whereas the latter remains for small 
amounts of randomness in the three-dimensional model. 
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As the randomness increases, the first order line becomes 
shorter until it reaches the ∆/J axis at a critical probability 
pc=0.08, above which the first order no longer exists and is 
converted into a smooth continuation between F3/2 and 
F1/2. So, these phases can be treated at this level by a single 
ferromagnetic phase, denoted by F. We give in Figs. 4 and 
5 the phase diagram for respectively p=0.03, in which the 
first order is present, and for p=0.1, in which it is absent. 
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Fig. 4. Phase diagram of the random three-dimensional 
spin-3/2Blume-Capel model in the plane (1/J, ∆/J) for a 

probability p=0.03 
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Fig. 5: Phase diagram of the random three-dimensional 
spin-3/2 Blume-Capel model in the plane (1/J, ∆/J) for a 

probability p=0.1. 
 

In the two random three-dimensional models, the 
second order phase transitions belong to the same 
universality classes as those of the pure models. One will 
also note that the random spin-3/2 Blume-Capel model 
presents a dimensional crossover, given that it behaves 
differently in two and three dimensions, unlike the spin-1 
random model. 

Our result concerning the absence of first order 
transition in the three-dimensional random spin-1 model is 
in agreement with the reference [29], a study on the three-
dimensional random field Ising magnet. But it is in 
disagreement with reference [30] based on a site-diluted 
four states Potts model. In reference [31], the author, using 
the Bethe lattice recursions, presents a result similar to our 
three-dimensional spin-3/2 one, unlike the reference [28] 

based on the pair approximation, in which the first order 
transition is always present, whatever the value of 
probability. The disparity in the results observed shows 
that the effect of randomness on the phase transitions is 
still controversial, the nature of the transitions being 
subject of many uncertainties due to the absent of an exact 
result. 

 
 
3. Conclusion 
 
During this study, we have used the Migdal-Kadanoff 

renormalization group approach to investigate the impact 
of a random crystal field obeying to a bimodal probability 
distribution on the spin-1 and spin-3/2 Blume-Capel 
models on hypercubic lattices. We managed to determine 
the principal fixed points and phase diagrams, which 
revealed that the randomness has a marked influence on 
the critical behavior of the spin systems. Indeed, in the 
two-dimensional models, the first order transitions have 
been totally removed and replaced by a second order 
transition or a smooth continuation, respectively for the 
spin-1 and spin-3/2 models. Regarding the three-
dimensional models, they react differently under 
randomness, given that the spin-1 model continues to 
behave like its two-dimensional version, whereas the spin-
3/2 model presents a critical probability distinguishing two 
different critical behaviors, the former occurring for values 
of probability less than pc and characterized by the first 
order transition presence finishing by a critical end-point, 
the latter concerning values of probability greater than pc 
and in which the first order transition is absent. In the 
random spin-1 and spin-3/2 models, the second order 
transitions are of the same universality classes as those 
occurring in the pure models, for two-dimensional case as 
well as for three-dimensional one. 
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